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Abstract. Finding a way in a given maze is a common problem for mobile robots. Many routing 
algorithms are presented to solve the maze, but they usually propose a theoretical algorithm which can 
not be well applied to realistic problem. The biggest obstacle to practical use is to build the model in 
accordance with the true scale of the robot and the maze. In this study, we present a new path routing 
approach for mobile robots to get an intuitive filled path, which can solve the difficulty of modelling 
and be well applied to realistic problem. This approach is based on an optimized representation 
method of the maze. Specifically, we encoded adjacent pixels of same row into a segment, then use 
four basic elements in a column of a coded matrix to represent the segment information. Finally, an 
A* like algorithm is applied to the coded matrix to obtain filled path. The proposed method has a high 
compression rate and is capable to form a walkable domain for robots instead of a single shortest path. 
Also, we compared this algorithm with many classical maze coding methods and routing algorithms, 
the result shows the effectiveness and efficiency of our approach in compression rate and 
maze-solving time. Furthermore, many practical engineering fields can utilize this approach where it 
is a priority to find a walkable path in a relatively short time. 
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1. Introduction 

The objective of motion planning for mobile robots is to find a walkable path where the collisions 
between robots and obstacles are rare. When robots are designed to search for a walkable path in maze, 
firstly a modeling about maze and robot is required. A two-dimensional planform constructed in 
accordance with the true scale of the robot and the maze needs to be produced. Then some image 
preprocessing algorithms will be applied to the planform, lastly the searching algorithm is applied to 
the processed planform to find the walkable path. An efficient searching algorithm can soon find the 
desired path and avoid collisions with obstacles at the most extent. Many searching algorithms are put 
forward to solve the maze, but they usually ignore the first step or just propose a theoretical algorithm 
which can not be well applied to realistic problem. The biggest obstacle of these algorithms is the 
difficulty of modelling. Generally, the width of the maze and the size of the robot are different in 
different situations, so there is a need of a new model for each situation. Also, these conventional 
searching algorithms will always find the shortest path which do not consider the possible collisions 
with walls. In our approach, we generalize the model to well applied to a wide range of situations, 
which can find a walkable domain for robots without colliding with the obstacles. Generally, 
searching algorithm is not related to the image preprocessing, but our searching algorithm is based on 
the image preprocessing or a new representation of maze. A well compressive representation of the 
maze is necessary for robots, as usually the memory of MCU (Microcontroller Unit) in robots is 
limited while the data amount of maze can be huge. Also, in real world, the shape of the maze varies 
greatly, so the representation method should be applicable for different kinds of situations. In this 
paper, we present a new representation method, which reduces the required memory and helps the 
following searching procedure. We have compared our approach with several data compression 
methods in their compression rate. Also, we have compared our searching algorithm with other 
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searching methods and analyzed their strengths and weaknesses. In modern society, accidents like 
conflagration, explosion and collapse happen frequently. To find injured people and offer assistance 
in time, the detection and searching function of robots plays a significant role. And the accident scene 
can be regarded as a maze scenario, which means the core task of the robot is to find a viable path 
inside the maze model and operate commands. In this case, our method can be highly beneficial with 
highly effective compression because of the complexity of real accident scene. 
1.1 Compression Method  

For compressing the required memory, some methods are used to simplify the maze. Usually there 
are two ways: The first way is to gather the closed similar pixels as one point; The second way is doing 
the down sampling to reduce the image size.  

For gathering the closed and similar pixels, Kambhampati and Larry S. Da [1] proposed 
Quadtree-related method which used squares with different sizes to represent the free space. In reality, 
lots of roads contain much curvilinear figure and in this situation the complexity of algorithm will 
increase significantly.  

For doing the down sampling, Thorpe et al. [2] in 1984 computed Grid search method, laying grids 
on the maze picture and using the grids in path area to represent free space. However, since the grids 
are fixed, the cumulative error is the main shortcoming and the path could only be shortened by 
reducing the margin of grid which will increase the complexity a lot. Achour et al. [3], in 2011 
proposed a more flexible method which used uniform random sampling to represent the free space. 

Compression method is strongly related with the result of the final searched path. For the first 
method, the searched path is partly filled. For example, the path will be the connection of squares if 
using the quadtree compression method. The second method is compressing the maze with distortion, 
and it still uses individual pixels to represent the maze. The path it finds after applying the searching 
method would be a line. Nowadays, compression is not only used for reducing the memory, but also 
used to support the searching method. Our approach will code the maze with a high compression rate 
with no distortion. It will help to find a filled path to avoid the complexity of modelling. 
1.2 Searching Method 

Searching method is mainly divided into three types, which are depth-first, breadth-first and neural 
network algorithm. They can also be categorized according to whether it can find optimal path or not. 

 For the breadth-first method, Lee’s algorithm [4] is proposed long ago and widely used in 
computer-aided design systems. For the problem of inefficiency, plenty of work was done to improve 
this classical algorithm (Jeffrey H. Hoel, 1976 and Mercedes et al,. 1997 [4])  

Depth First and Breadth first search (Moore et al. [5], 1961) starts at an arbitrarily chosen root node 
and explore about node which has not been extended. The depth of the searching consistently 
increases before backtracking. In contrast, nodes neighboring previous ones are extended in Breadth 
first search (BFS). Thus all the nodes in same depth level are explored. Based on that, A* (Hart et al. 
[4] [7]) is a heuristic searching algorithm which evaluates adjoint nodes at current location and selects 
optimal one as the root node for next search. A* always follows the node who has the smallest sum of 
the previous moving steps from starting point and straight-line distance to the ending point. 
Preventing repetitive search, nodes that have been extended are recorded.  

Branch and Bound(Land et al. [8], 1960) is an algorithm for optimization problem. This algorithm 
compares one candidate solution with other branches, evaluating the upper and lower bounds of the 
problem. Solutions that unable to produce better result are eliminated. For the path searching problem 
that a set of solutions have been found, Branch and Bound evaluates cumulative path length of 
candidate path and filters out the one with minimum value. 

Reinforcement learning is another favored method to solve such kind of question in recent years, 
such as on-policy SARSA learning (Sutton and Barto 1998 [9]) which is firstly motivated by findings 
in the midbrain dopaminergic system (Morris et al [10]. 2006), and Q-learning will be discussed in 
detail in experiment section. 
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2. Model and Methods 

In this section we explain the implementation of our approach in detail including how the matrix is 
encoded, in addition with concrete algorithm procedures of how to find a walkable domain for the 
mobile robots. The whole procedures can be divided into four steps: 

1. Binarizing the matrix 
2. Coding the matrix 
3. Finding the path 
4. Optimization of walkable domain 

2.1 Matrix Binarization 

The input to the robots should be a planform of maze with the coordinates of the beginning and 
destination. The maze picture does not need to construct in accordance with the true scale of the robot 
and the maze. Firstly, the maze pictures need to be binarized. Pixels of a maze picture can be classified 
into two types. As seen from Fig. 1(a), pixels located in the wall area is called wall pixel and other 
pixels in the free-space is called path pixel. Without affecting the result of going through the maze, the 
maze matrix can be simplified by the following way: the wall pixel is represented by 0 and the path 
pixel is represented by 1. In this way, we create a matrix named binarization matrix, of which the scale 
is equal to the scale of the original maze picture and each pixel of original maze picture corresponds to 
an element at the same position in the binarization matrix, as shown in Fig. 1(b). After binarization 
process, an efficient matrix coding process is required, as usually the maze picture contains a huge 
amount of data which is challenging to many routing algorithms such as A*. Besides, almost every 
routing algorithm would find a line but not a path for the robots if the starting point and destination are 
fixed. Therefore, we present a new matrix coding method and the routing algorithm based on it. 

                                                           
(a) Maze         (b) Binarization Matrix      (c) Adjacent Pixels      (d) Coding Matrix 

Fig. 1 The original maze (a) with binary number on it. Extract the numbers to get binarization 
matrix (b). Gather the adjacent pixels in same row as segment (c).Coding matrix (d) with the extracted 

the segments. 
2.2 Matrix Coding 

Matrix Coding is essential in searching algorithm as it reduces the memory space of image which 
leads to lower computational cost and decides the appearance of the final path. 

In this paper, the presented matrix coding methods compresses the adjacent pixels in the same row 
into one segment, shown in Fig. 1(c), which contributes to our filled- path routing algorithm as well as 
a more compressed matrix.  

This objective of coding matrix is to indicate the position of path pixel in the maze. For example, a 
binarized matrix of representing the maze is given in the Fig. 1(b), pixels with value ‘1’ represent the 
free space while value ‘0’ represent wall region. Then we represent all the adjacent pixels of value ‘1’ 
in a row to be one segment. As it can be seen in Fig. 1(c), each gray region forms a segment. Then 
every segment is represented in the coded matrix by a column with four basic elements from top to 
bottom. The first element represents the pixel type: ‘1’ represents a walkable path segment, ‘0’ for a 
wall segment and ‘3’ for already walked path segment. The second element represents this segment 
belongs to which row in the binarization matrix. The other two elements represent the beginning and 
ending position of the segment in that row respectively. In this way, the binarization matrix is 
transformed to a coded matrix which indicates all the accessible path area and hide the remaining wall 
area. A coded matrix for the given maze in Fig. 1(c) is shown in Fig. 1(d), each column in coded 
matrix represents a segment in maze with order from top to down. The whole process is given by 
Algorithm 1 Coding the Matrix in detail. 
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Algorithm 1 Coding the Matrix 
Require: : Binarization form of input maze picture. 

    Mc ← ∅  
    count ← 1 
    for l in range length( ) do 
        for w in range width( ) do 
            if M(l,w) not equals to M(l,w−1) and M(l,w−1) equals to 1 then 
                 begin ← 1 end if 
            if M(l,w) not equals to M(l,w−1) and M(l,w−1) equals to 0 then 
                 end←w 
                 Mc (1, count) ← 1 
                 Mc (2, count) ← l Mc(3, count) ← begin Mc (4, count) ← end 

count ← count + 1 
            end if 

end for 
    end for 
return Mc: The compressed maze by each segment. 

Apart from the main elements, for each column of the coded matrix, some extra information could 
be added to optimize the routing. For example, four extra plug and play elements could be added to 
reduce computational complexity when finding paths. The first two represent how many new paths 
are connected to the upper or lower bound of the segment, the last two represent how many accessible 
paths are connected to the upper or lower bound of the segment. These four elements can be used to 
make the routing algorithm easier to apply.  
2.3 Path Finding  

Original A* algorithm cannot be applied to the coded matrix directly, so we provide an A*-like 
routing algorithm which enable A* and our proposed algorithm coalesced as a whole.  

Before searching the path, the starting point and end point of the robot path need to be set. Then the 
algorithm would locate which segment the starting point belongs to by traversing all the segments in 
coded matrix. After fixing the starting point, each time before the robot move, the priority to choose 
which path to take is set for the robots. The rules of setting the priority is as follows: Firstly, 
comparing the vertical coordinates of the end point and midpoint of the current segment, if the end 
point is on the top of midpoint, then moving up has higher priority and vice versa. Next, if there exists 
more than one path of moving up or down, then compare the horizontal coordinates of end point with 
the adjacent point with these paths. The path with horizontal coordinates more closed to end point has 
higher priority. Thirdly, if robot meets a dead end at some segment, then it returns back to the original 
segment and set that dead end segment be to a wall segment (changing the first element of the column 
that represents the segment to be ‘0’). Lastly, the algorithm would mark these segments that already 
walked to prevent repeated routing (changing the first element of the column that represents the 
segment to be ‘3’), then the robot would traverse each road according to its priority until finding a 
walkable path. 
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(a)Result of the path finding (b) Fixing the strings (c) Path finding after rotation (d) Final filled path 

Fig. 2 This picture shows the steps we use to get the filled path. We apply the path finding and receive 
(a). Then, fixing the ‘string’ (b), followed by find the path again after rotation and some processing. 

Finally, fix the ‘string’ again to get the filled path (d). 
In this way, a walkable domain for the robots from starting point to end point can be roughly 

determined, as can be seen from Fig. 2(a). However, some thorn and string problems may be raised. 
2.4 Optimization of Walkable Domain  

Stings usually appear when path turns around. The phenomenon of turning around typically 
happens when the robot meets a dead end and has to returning to the original segment to find another 
path. In this case, only one segment connects the entrance and exit of this path, so a ‘string’ is 
generated. As can be seen in Fig. 2(a), there are several very thin paths, which look like ‘string’. This 
is similar with the prior routing algorithm such as A* as it produces a line instead of a path, therefore, 
we need to find a way to deal with these extra strings. Another problem called ‘thorns’ may appear as 
well when we implement the algorithm. As it can been seen from Fig. 2(a), there are many redundant 
paths that robots walk from starting point to end point, this phenomenon is called ‘thorns’. Fixing the 
strings: The pseudo-code for fixing ‘strings’ is given in Algorithm 2 Fixing the String. Before fixing 
the strings, we need to judge and locate the string segment in the path by the following formula: 

 

 represent the collection of in order segments as the filled path.  is the current step 
number, every time the robot moves, the  will increase by 1.   denotes the i-th 
element of column in coded matrix which represents the current segment where the robot is currently 
located when the step number is . Then the algorithm will traverse all the segments and locate 
the ‘string’ segment according to the formula: 

                         
 is the number of segments we need to insert to fix the ‘string’. S denotes the sensitivity, 

which can be changed according to the shape of the maze, usually it is set to 1. The formula implies 
we can insert several segments around the ’string’ place to solve the problems, the number of inserted 
segments is set to be  , where we set the value of  to be a multiple of arithmetic average 
of the length of two segments at both ends of the ’string’ with the sensitivity. After tacking the ‘string’, 
the maze picture is shown in Fig. 2(b), from which we can see that all the ‘string’ have been 
successfully deleted, and path is filled. 
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Algorithm 2 Fixing the String 

Require: : Raw path in the form of segments 

  for l in range length( ) do 

if  equals to  then 

   ← insert n segments at proper place in  

  ←  

   
end if 

  end for 

 return :Path with fixed strings 

Fixing the thorns: The appearance of ‘Thorn’ is because our algorithm represents all the adjacent 
data in the same row as one segment, and all elements of the segment that robots have walked to be a 
walked path. In this way, robots may walk some redundant path as some elements in a segment may 
not be walked. 

To tackle this problem, we can firstly record the path from starting point to end point that robots 
have already walked to be the walkable domain and other regions are all set to be wall regions. Then 
we rotate the maze by 90 degrees and implement the same algorithm to let robots go through the maze 
again, the result maze picture is shown in Fig. 2(c). Lastly, we can fix the strings by the following 
method, and the final image is shown in Fig. 2(d), so far we have successfully found a walkable 
domain from starting point to end point. 

3. Experiment 

To verify the performance of our algorithm, we have compared our approaches with other image 
coding methods and other searching algorithms. 
3.1 Comparison with Other Image Coding Methods 

In order to let robots find a walkable path in maze, coding the image and uploading it to the robot 
are necessary. In this paper, we have compared our approach with two classic image coding methods. 
The first one is Compressed Sparse Row (CSR) [11], the second is quadtree image coding. 

Compressed Sparse Row (CSR) is a typical method of compression. Three types of data are 
required to represent image matrix: numeric values, column indexes, and row offsets. The row offset 
represents the start offset of the first element of a row in values. This form of storage requires the 
memory size of where  represents the amount of data that is not zero in the matrix 
and 0n0 is the number of columns. For quadtree image coding [12], it divides the image into quarters 
iteratively until all values of pixels in same block are equal. For all nonzero blocks, let the northwest 
corner pixel represent the total number of pixels in the block it belongs to, which can fully represent 
the image matrix. 

In order to compare the compression effect of these methods, the compression rate can be defined 
as follows: 

 
being respectively the total number of bits for storing the image matrix after compression in i-th 

method, N is the total number of bits before the compression. 
These image coding methods are all undistorted. In our comparison, to ensure that the initial 

amount of data for all methods is constant, we resize the all the image size to be 512512 before coding. 
And the comparison of those methods in compression rate is provided in Table 1. 
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     Table 1 Coding rate comparison     
Method               Total bits to represent maze       Compression rate 

CSR                               217921                                     0.8313 

Quadtree image coding          114699                                     0.4375 

Our approach                     22516                                       0.0859 

3.2 Comparison with Other Searching Algorithms 

  To test practical usability of our approach, we have compared our methods with two popular 
methods, Q-learning based on reinforcement learning and A* algorithm respectively. For Q-learning, 
the advantage is that it can ensure to find a shortest path and for A*, the advantage is that it runs 
relatively fast and its modifiability. Final assessment criteria of those algorithms include 
computational complexity, whether it can form a path, whether it guarantees to find a shortest path, 
and whether it requires a matrix coding before implementation of the searching algorithm. On all the 
methods, we code the maze as 0-1 sparse matrix with size of 650650, and robots in maze only have 4 
directions to move including up, down, left and right. A detailed analysis of their weaknesses and 
strengths is given as follows: 

  Q-learning Algorithm [9]: It is a useful algorithm to solve certain kind of problem that involves a 
robot which needs to interact with its environment. It is a derivative of reinforcement learning (RL) 
[13] which could train an AI system. The basic principle is that in the interactive environment, the 
robot uses its own experience and feedback to learn through trial and error. 

  Q-learning is an off-policy algorithm. Intuitively, the result of the algorithm is to create a Q table 
to record the weight of different policies (actions) in each state since we regard the robot in the maze 
(the agent could be robot in the application scenario) as an FSM (finite state machine) and weights are 
constantly updated based on historical experience. 

  Theoretically, the Q-learning algorithm is mathematically guaranteed to converge to find the 
shortest path and after training, the optimal action for every possible state could be known. However, 
for such a huge sparse matrix, the algorithm will spend a large amount of time to produce the final 
Q-table and the required memory to store the Q-table will grow as the square of the number of states. 
For example, this algorithm will cost more than 2 hours when iteration number is set as 3. However, 
the iteration number needs to be set far more than 3(typically hundreds of times) to get the optimal 
Q-table. Besides, our experiment shows that iteration number have to be set more than 400 so that the 
algorithm could find the correct path for solving a 66 maze. Therefore, though the algorithm is 
guaranteed to find a shortest path, it is inapplicable for solving our maze with such complexity. 

A* Algorithm [6]: it is one of the most effective direct searching method for finding the shortest 
path in static road network. It also acts as a heuristic approach for many other problems. Robot starts 
with start point A, checking the adjacent squares, and extends them out until it finds the target point. 
The core formula is expressed as: 

 
Where  is the evaluation function of node n from the initial point to the target point,  is 

the actual cost of going from the initial node to the node n in the state space and  is estimated cost 
of the optimal path from node n to the target node. 

The performance of A* algorithm exceeds the Q-learning algorithm in time consuming. In our 
experiment, A* costs only 3 seconds to solve the maze completely. What is more, we also have to 
concede that the A* algorithm takes less time than our method. However, there exists two deficiencies 
when applying this algorithm in practice. Firstly, as can be seen in Fig. 3, the left figure is the searched 
path by A* algorithm, and the right figure is the searched path by our approach. To run A* algorithm, 
we must assume that the robot is a pixel in the figure, so an accurate modelling needs to established in 
accordance with the true scale of the robot and the maze, then we can decide how many pixels the 
width of the maze occupy. After running A* algorithm, we can find that it has searched a same path as 
our approach, but it is almost walking against the wall as the robots only occupy one pixel. Although 
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it is a shortest path, but in practice, this is impossible because the robot has inertia, and there is a 
possibility of hitting the wall when it is walking against the wall. As our approach find a filled path 
from beginning to destination, so there is no need to build the model in real scale, and it can also 
ensure that the robot will not hit the wall. Secondly, this algorithm cannot always guarantee to find the 
shortest path. Let D represents the distance from state n to the target state and H represents the 
estimated amount of movement from the current point to the target point. There are 3 conditions. If H 
≤ D, in this case, the number of searching points is huge, and the algorithm undergoes a large 
searching range. It has a low efficiency but can get the optimal solution. If H = D, then the search will 
be guaranteed to find the shortest path, and the searching efficiency is highest. If H > D, the number of 
searching points and the searching range is small, so the efficiency is high, but cannot guarantee to 
find the shortest path. Since H is often called heuristic that means we cannot know the actual length of 
the path in advance. A* algorithm could not always get the optimal solution. 

                                       
(a) Searched path of A*                      (b) Searched path of our approach 

 Fig. 3 Comparison of A* and our approach 
We have test running time of A* and our algorithm in this certain maze. Our CPU is Intel i7-7700 

and 4.2GHz in dominant frequency including four cores with eight threads, which can be seen in 
Table 2. 

Table 2 Time consumption comparision 
 A*/s Our Method/s 

First Test 0.87 8.31 

Second Test 0.71 10.56 

Third Test 0.93 7.48 

Fourth Test 0.68 15.21 

Fiveth Test 1.12 9.33 

Average 0.86 10.18 

In conclusion, we test the same maze on different algorithms and made a brief comparison given in 
Table 2 Q-learning can guarantee the algorithm’s ultimate convergence to shortest path, but the 
required computing time is too long and consume relatively large computer memory. Although A* 
can solve the maze in a relatively short time, it is not guaranteed to always find shortest path since it 
depends on what heuristic function is used and cannot avoid collisions with walls in practical 
application. By contrast, the proposed new algorithm could solve this sort of awkward situation by 
means of forming a practical walkable domain. 
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Table 3 Path finding algorithm comparison  
Method Complexity    Disadvantages 

Q-learning High NO Yes NO Long calculation time 

A* Medium NO Uncertain NO Cannot guarantee optimal 

Our method Medium YES NO YES Cannot guarantee optimal 

Basic Theta Low NO NO NO Long calculation time 

JPS Medium NO NO NO Cannot guarantee optimal 

1 Walkable Domain Finding 
2 Guaranteed to be optimal 
3 Require matrix coding 

4. Conclusion 

The maze path planning problem is extensively researched. However, in some specific application, 
such as routing of pathfinding cars or mobile robots, building a accurate model in accordance with the 
true scale of the robot and the maze is not line with actual requirements. Also, some shortest paths for 
robots to take do not consider the size of robots which may cause collisions with walls. New 
approaches to find a practical path in a relatively short time need to be developed as well. 

We develop a new approach for finding a walkable domain of a mobile robot, which will avoid 
collisions thoroughly. Our method starts by coding the maze in order to enable fast execution of 
searching algorithm as well as save storage space. Then we apply our searching algorithm. During the 
process, some inevitable thorns and strings may appear, which are addressed in following step and 
then we can get final walkable region. It is compatible with most maze problems using this algorithm 
for finding actual walkable path. In addition, we make a comparison with many other methods. 
Although our method does not perform as well as A* algorithm does in running time, our results 
could find actual walkable path which could avoid collisions with walls thoroughly. Compared with 
Q-learning, there is an incomparable advantage in running time and memory usage. 

The performance of our algorithm is quite promising. However, there is still plenty of room for 
improvement in our approach. In the future, we will make a further improvement to let our algorithm 
more compatible in practical engineering field. 

5. Availability 

Code for our own methods and comparison algorithms is available on GitHub: https: 
//github.com/CheneyFeng/OptimizedArrayPicturalStorage. Our work is still in progress and might be 
subjected to some subtle changes. 

Acknowledgements 

First and foremost, thank to everyone involved in this project. In particular, Glasgow College, 
UESTC who found this project. Institute of Science and Management of the School League 
Committee offer the place to discuss. Data Mining Lab offer the guidance on paper writing.  

Also, I would like to thank Dr. Wei Han, Dr. Liyan Zhang and Dr. Jinjun Zheng for all their 
kindness and help. 

 

Advances in Computer Science Research, volume 88

672



 
 

 
 
 
 

References 

[1]. Samet, H. and Webber, R.E., 1985. Storing a collection of polygons using quadtrees. ACM 
Transactions on Graphics (TOG), 4(3), pp.182-222. 

[2]. Thorpe, C.E. and Matthies, L.H., 1984. Path relaxation: Path planning for a mobile robot (pp. 
576-581). Carnegie-Mellon University, the Robotics Institute. 

[3]. Achour, N. and Chaalal, M., 2011. Mobile robots path planning using genetic algorithms. In The 
seventh international conference on autonomic and autonomous systems, Baker, ICAS (pp. 
111-115). 

[4]. Hoel J H. Some variations of Lee’s algorithm[J]. IEEE Transactions on computers, 1976, 100(1): 
19-24. 

[5]. Lee C Y. An algorithm for path connections and its applications[J]. IRE transactions on 
electronic computers, 1961 (3): 346-365. 

[6]. S.G. Cui, H. Wang, L. Yang A Simulation Study of A-star Algorithm for Robot Path Planning 
16th international conference on mechatronics technology (2012), pp. 506-510 

[7]. Hart P E, Nilsson N J, Raphael B. A formal basis for the heuristic determination of minimum cost 
paths[J]. IEEE transactions on Systems Science and Cybernetics, 1968, 4(2): 100-107. 

[8]. Land A H, Doig A G. An automatic method of solving discrete programming problems[J]. 
Econometrica: Journal of the Econometric Society, 1960: 497-520. 

[9]. Sutton R S, Barto A G. Reinforcement learning: An introduction[J]. 2011. 

[10]. Morris G, Nevet A, Arkadir D, et al. Midbrain dopamine neurons encode decisions for future 
action[J]. Nature neuroscience, 2006, 9(8): 1057. 

[11]. DAzevedo E F, Fahey M R, Mills R T. Vectorized sparse matrix multiply for compressed row 
storage format[C]//International Conference on Computational Science. Springer, Berlin, 
Heidelberg, 2005: 99-106. 

[12]. Gargantini I. An effective way to represent quadtrees[J]. Communications of the ACM, 1982, 
25(12): 905-910. 

[13]. Watkins C J C H, Dayan P. Q-learning[J]. Machine learning 1992, 8(3-4):279-292. 

Advances in Computer Science Research, volume 88

673




